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Abstract

This paper compares the effectiveness of various multi-resolution geometric representation meth-

ods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to

capture the structure of fully developed turbulence using a truncated set of coefficients. The turbu-

lence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a

5123 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Ret = 1800,

and the methods are tested against quantities pertaining to both velocities and active scalar (den-

sity) fields and their derivatives, spectra, and the properties of constant density surfaces. The com-

parisons between the algorithms are given in terms of performance, accuracy, and compression

properties. The results should provide useful information for multi-resolution analysis of turbu-

lence, coherent feature extraction, compression for large datasets handling, as well as simulations

algorithms based on multi-resolution methods. The final section provides recommendations for

best decomposition algorithms based on several metrics related to computational efficiency and

preservation of turbulence properties using a reduced set of coefficients.
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1. Introduction1

Most datasets encountered in physical applications, similar to most natural images, present2

lower dimensional structures whose detection, extraction, and characterization are active areas3

of research. The search for more efficient algorithms to detect and manipulate such structures4

has led to the development of a multitude of multi-resolution geometric representations, such as5

curvelet and surfacelet transforms. The curvelet [1] and surfacelet [2] transforms perform spatial6

partitioning in Fourier space at multiple resolutions by creating bands using discrete frequency7

tiling that store localized directional coefficients.8

One area which has seen significant interest in the application of such methods is fluid turbu-9

lence. While turbulence is a strongly multi-scale phenomenon with a large range of dynamically10

relevant spatio-temporal scales, coherent structures are almost always present, due to initial or11

boundary conditions, injection mechanisms, or arising from internal dynamics. The characteriza-12

tion of these structures, which interact nonlinearly as they are advected by the background flow13

and significantly alter the local topology, is one of the fundamental open questions in the study14

of turbulence. One of the earliest applications of compression algorithms to turbulence is done15

in Ref. [3]. The focus was on comparing the coherent vortex simulation (CVS) decomposition16

based on a orthogonal wavelet basis with the Proper Orthogonal Decomposition or Fourier filter-17

ing, as applied to a forced homogeneous isotropic turbulence Direct Numerical Simulations (DNS)18

dataset. It is shown that CVS filtering, which is local in both physical and spectral spaces, can sep-19

arate the coherent vortex tubes from the incoherent background flow. The latter is structureless,20

has an equipartition energy spectrum, a Gaussian velocity probability distribution function (PDF),21

and an exponential vorticity PDF. On the other hand, the Fourier basis does not extract the coher-22

ent vortex tubes cleanly and leaves organized structures in the residual high wavenumber modes23

whose PDFs are stretched exponentials for both the velocity and vorticity.24

More recently, curvelets have been briefly evaluated by Ma et al. [4] in comparison to the25

classical wavelet transform. In their work, multi-scale geometric analysis is systematically applied26

to turbulent flows in two and three dimensions using curvelets. The analysis is based on the27

constrained minimization of a total variation functional representing the difference between the28
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data and its representation in the curvelet space. Constrained multi-scale minimization results in29

a minimum loss of the geometric flow features and the extraction of the coherent structures with30

their edges and geometry properly preserved, which is significant for turbulence modeling. The31

results of this work show that curvelets are very effective in edge and geometry preservation in32

turbulence data when compared to traditional wavelets under a specific series of tests and wavelet33

coefficient numbers. One goal of the present paper is to expand those tests to the full range of34

coefficients for reconstruction of turbulence data as well as include tests for quantities dependent35

on an active scalar field.36

These methods have been primarily applied to the quantities directly related to the velocity37

fields although, recently, the curvelet transform has been used to examine the multi-scale structure38

of scalar fields, such as mass concentration [5]. These fields are, in general, rougher than the39

advecting velocity and can present unmixed patches in many practical applications (e.g. non-40

premixed combustion). Thus, representation methods which are designed to capture surfaces or41

edges, such as surfacelets or curvelets, appear naturally more suited to capture these fields. For42

example, Ref. [5] introduces a curvelet-based multi-scale methodology for the study of the non-43

local geometry of eddy structures in turbulence data. The dataset is from a 5123 DNS of passive44

scalar mixing in isotropic turbulence and the curvelet transform is used to extract, characterize45

and classify structures pertaining to the passive scalar. The classification is based on differential-46

geometry properties, such as shape index, curvedness, and stretching parameter, which define the47

geometrical signature of the surfaces of constant scalar value. These properties are discussed with48

respect to their relation to the dynamical behavior of passive scalar stirring and mixing. Another49

goal of the present paper is to compare the curvelet transform with other representation methods50

for their ability to preserve these properties with a reduced set of coefficients.51

Accurate simulations of turbulent flows require solving all the dynamically relevant scales of52

motions. This technique, called DNS (see above), has been successfully applied to a variety of53

simple flows, however most practical flows would require mesh sizes outside the range of the most54

powerful supercomputers for the foreseeable future. The resolution requirements can be improved,55

especially in problems with localized features, by employing an adaptive mesh strategy. However,56

such approaches often introduce directional bias and use lower order discretization methods, which57
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decreases the accuracy. Adaptive mesh strategies based on wavelet decompositions have been58

proposed with explicit error control and higher order discretization schemes [6, 7, 8]. While these59

methods extend the range of DNS applicability, accurately solving all the flow scales still imposes60

severe limitations on the flows which can be simulated.61

One of the avenues being explored for simulating, with feasible meshes, flows with large range62

of scales, as encountered in most practical applications, explores coherent/incoherent decompo-63

sitions allowed by multi-resolution geometric representations [3, 4, 9, 10]. This approach relies64

on the ability of such methods to represent the coherent part of the flow with a significantly re-65

duced set of coefficients (e.g. 1 − 5% of the coefficients to represent the whole flow) and model66

the incoherent part using simplifying models (e.g. assume Gaussian statistics). For such applica-67

tions, the accuracy and computational efficiency of the algorithms are both important. So far, only68

the curvelet, Dual-tree, and orthogonal wavelet transforms have been used in this context and no69

comprehensive comparison between these transforms has been made. Classical large eddy simu-70

lation (LES) approaches for computing turbulence represent the flow on a coarse mesh in either71

real or spectral spaces and model the sub-grid contributions. While finding an optimal function72

set basis to represent turbulence remains an outstanding open question, the representation methods73

discussed in this paper may offer a better framework for modeling the sub-grid terms in an LES74

type approach than spectral or physical space based filters, due to their localization in both spectral75

and real spaces. Here, we rely on this locality to denote the coherent/incoherent decomposition as76

applied directly to the primary variables, as opposed to CVS-type decompositions. This is along77

the lines of the SCALES approach [9] and offers easy generalizations to complex flows and direct78

connection to LES-type approaches.79

In addition, there is a significant cost associated with the storage of the data generated by80

turbulence simulations. Efficient lossy algorithms can take advantage of the coherent/incoherent81

decompositions of the flow field and significantly reduce the archival requirements. Data retrieval82

can be optimized by extracting only the coherent structures in the data for faster data visualization83

and analysis at multiple levels of resolution. By reducing the retrieval and transmission cost,84

projects such as the Johns Hopkins Turbulence Database (JHTDB) can be improved by reducing85

the amount of data processed and transmitted to a client [11]. By only sending structures at a86
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resolution relevant for analysis, the reduced cost can allow for real-time remote data visualization87

and analysis of large datasets.88

The focus of this paper is the comparison of new and existing methods used in analysis (fea-89

ture identification, extraction, and analysis) and simulations (based on coherent/incoherent de-90

compositions) of turbulence. These methods include second-generation wavelets such as Haar,91

biorthogonal B-spline, Daubechies, Coiflets, Dual-tree, and newer methods such as curvelets and92

surfacelets. In order to make the comparisons as comprehensive as possible, a flow has been se-93

lected in which the turbulence is accompanied by mixing between initially segregated different94

density materials (see description below) which are subjected to a constant acceleration. The large95

scales of the flow are anisotropic and the interfaces between the two materials become highly cor-96

rugated. The methods considered are compared in their ability to capture the structures of both97

velocity and density fields. It is hoped that this analysis will help both the simulations of turbulent98

flows using multi-resolution geometrical representations as well as further the study of turbulence99

physics using such methods.100

1.1. Direct numerical simulation dataset101

The dataset used in this paper is from a DNS of homogeneous buoyancy driven turbulence on a102

5123 periodic grid. The simulation used the variable-density version of the petascale CFDNS code103

[12] to solve the incompressible Navier-Stokes equations for two miscible fluids with different104

densities, in a triply periodic domain. These equations are obtained from the fully compressible105

Navier-Stokes equations with two species with different molar masses in the limit c→ ∞ (c is the106

speed of sound) such that the individual densities of the two fluids remain constant [13, 14, 15].107

The two fluids are initialized as random blobs, consistent with the homogeneity assumption.108

The flow starts from rest, with only a small amount of dilatational velocity necessary to satisfy109

the divergence condition and turbulence is generated as the two fluids start moving in opposite110

directions due to differential buoyancy forces. However, as the fluids become molecularly mixed,111

the buoyancy forces decrease and at some point the turbulence starts decaying. For comparison112

between the different compression algorithms, density and velocity fields are used at the time113

when the turbulent kinetic energy is maximum. At this time, the turbulent Reynolds number is114
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Ret = 1800 and the turbulence is fully developed. The rest of the non-dimensional parameters115

characterizing the flow are Atwood number, A = 0.05, Schmidt number, S c = 1 and Froude116

number, Fr = 1. A similar dataset [16], on a 10243 mesh, covering the whole range of turbu-117

lence evolution, from buoyancy driven increase in turbulent kinetic energy to buoyancy mediated118

turbulence decay, has been recently added to the Johns Hopkins Turbulence databases [11].119

The rest of the paper is organized as follows. In section 2, a background is given of the geo-120

metric representation methods considered in this paper. Section 3 summarizes the software used,121

thresholding techniques, and properties for all of the different methods. The testing methodologies122

are described and the results are quantified in section 4. Finally, section 5 presents the conclusions123

with the recommendations of the best schemes suited for the representation and preservation of a124

variety of quantities relevant to fully developed turbulence in the presence of an active scalar field.125

2. Background and methods126

Wavelets are the generalization of the Fourier transform by using bases that represent both127

location and spatial frequency [17]. A more fundamental background on wavelets can be found128

in Appendix A. This section gives a brief overview of each of the representation methods used129

for comparisons. All methods considered in this paper are the discrete versions of their respective130

continuous signals. Wavelets used in this paper are second-generation wavelets in implementa-131

tion [18].132

2.1. Orthogonal wavelets and B-spline wavelets133

The orthogonal Haar wavelet is the simplest transform and is best known for its top hat, piece134

wise signal and simplistic representation. These simple wavelets can decompose a discrete signal135

into two half signals represented by a 0 or 1 per each step as seen in Fig. A.21a in the Appendix.136

Due to their simplicity, they are the fastest to compute. Farge [19] performed an initial analysis137

on the use of wavelets, including Haar wavelets, to characterize coherent and incoherent turbulent138

flow parts.139

The orthogonal family of Daubechies wavelets are similar in construction to Haar wavelets but140

requiring vanishing higher order moments in the mother signal. Their construction and signals are141
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described in [17] and shown for completeness in Fig. A.21 in the Appendix. As the Daubechies142

family increases in order, more distortions are produced in the original mother signal. For our143

analysis, the lower order 3rd , 5th, and 7th families of Daubechies wavelets are considered. As144

one goes to even higher order families of wavelets, the wider signals may cause overlapping in the145

analysis and introduce a loss in quality as it is shown later. Goldstein et al. [9, 10] used the 5th146

family of Daubechies wavelets for adaptive eddy simulations.147

The orthogonal Coiflet family of wavelets were first proposed by Beylkin et al. [20], then im-148

plemented by Daubechies [21] and Tian et al. [22]. As with Daubechies wavelets, Coiflets require149

vanishing moments in the original reconstruction signal. Unlike Daubechies wavelets, Coiflets150

focus on vanishing moments in their scaling function in order to further improve the convergence151

of the original signal. For this analysis, the first three orders are used: Coiflet-6, Coiflet-12 and152

Coiflet-16. Their respective signals can be seen in Fig. A.21 in the Appendix. Deriaz et al. [23]153

and Roussel et al. [24] have used Coiflet-12 for coherent vortex extraction in homogeneous turbu-154

lence. Farge et al. [3] used Coiflets for CVS decomposition to separate coherent vortex tubes from155

the incoherent background flow in turbulence.156

Biorthogonal B-spline wavelets are the natural extension to the Haar wavelet; similar in usage157

and implementation but differ in basis functions [25]. B-spline wavelets contain basis functions158

representing sinusoidal signals of varying magnitudes. The construction of both the decomposition159

and synthesis filters depend on two control parameters that select the family order and the number160

of discrete interpolation points to interpret a continuous wave. At the lowest order, constant B-161

spline wavelets share the same basis function as the Haar wavelets and will therefore refer to this162

family as Haar wavelets for the remainder of this paper. The first six families of B-spline wavelets163

are considered for this paper: constant (Haar, 1st degree), linear (2nd degree), quadratic (3rd164

degree), cubic (4th degree), quartic (5th degree), and quintic (6th degree). Family characteristics165

are further described in Appendix A.1.166

Biorthogonal wavelets in their lowest order have had some limited use in scientific computing.167

The lack of orthogonality in their higher order basis functions and associated computation cost has168

hindered their wider adoption so far. Adding to the slightly higher compute cost, B-spline wavelets169

are also not as easily parallelized compared to orthogonal wavelets. Parallelization is possible by170
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using the second-generation construction of wavelets based on a lifting scheme [26]. Roussel et171

al. [24] used biorthogonal (constant) Harten wavelets for the extraction of coherent vortices and172

found that the biorthogonal nature of the wavelets may cause problems in modeling background173

noise after extraction. Their results showed an improvement by using orthogonal Coiflet-12 over174

Harten wavelets. These results are expected due to Harten signal being fundamentally similar to175

the Haar signal as part of the constant family of B-spline wavelets, as seen in Fig. A.22b in the176

Appendix. Thus, an increase in control points does not generally produce improvements in recon-177

struction in contrast to increasing the family order. Nevertheless, while one expects a much better178

performance for higher-order B-spline wavelets, these methods have yet to be tested extensively179

for turbulent flows.180

For simple applications, orthogonal wavelets have overshadowed B-spline wavelets; however,181

higher order transforms such as B-splines may perform better in applications requiring the preser-182

vation of structures. For example, Bertram et al. [27] have shown that B-splines do very well183

in representing smooth surfaces and curved structures with a minimal set of coefficients. For the184

purpose of this paper, the lack of orthogonality is less important than the better preservation of185

various turbulence quantities.186

2.2. Dual-tree Wavelet Transform187

The Dual-tree complex wavelet transform (DTWT) is an enhancement of the discrete wavelet188

transform [28]. The DTWT implements shift invariance and directionality in multiple dimensions.189

The DTWT performs two discrete wavelet transform operations to construct a tree-like structure.190

Two paths are branched off, each representing the real and imaginary components of the trans-191

form. The real component is utilized to represent the majority of the energy in a dataset where192

the imaginary component captures small-scale details. The DTWT transform addresses issues193

present with real wavelets, those being oscillations, shift variance, aliasing, and lack of direc-194

tionality. The redundancy of having two branches provides additional information for analysis,195

approximate shift-invariance, and a perfect signal reconstruction unlike the discrete wavelet trans-196

form. The DTWT contains filters designed to represent many properties, such as approximate197

half-sample delays, orthogonal or bi-orthogonal signals, finite support, vanishing moments/good198
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stop-band, and linear-phase filters [29]. The filters considered in this paper include the Farras filter199

for the initial scale, and Kingsman’s Q-shift filter for the subsequent scales. The DTWT has been200

extensively used by Nguyen et al. [30, 31] for signal filtering on Galerkin methods.201

2.3. Curvelets202

The curvelet transform is a filter-based wave-signal decomposition algorithm that is designed203

to represent signals by their edges [1]. Curvelets are a non-adaptive method for multi-scale signal204

representation. Curvelets are derived from ridgelets, which are linear features that represent differ-205

ent lengths with respect to scale in different positions and as many orientations as can be defined206

for a dataset. Fig. 1 demonstrates the frequency tiling for the 2D and 3D discrete transform, the207

latter being used for this paper. The frequency tiling is defined in Fourier space, where certain208

ranges of Fourier coefficients are defined as the directional components of the curvelet transform.209

The curvelet transform extends the bi-directionality of wavelets to multiple directions where basis210

functions are localized to each direction. Within each direction, the degree of localization varies211

per scale allowing multi-resolution extraction of signals.212

Due to the large number of orientations, positions and scales available, the computation of this213

transform is expensive compared to any of the simpler wavelets. The result of a decomposition214

produces a large number of complex coefficients where their amplitudes refer to the underlying215

structure of the original dataset.216

So far, curvelets have not been proven to have an orthogonal basis function. The discrete imple-217

mentation aims to decompose a dataset based on the described band scheme and sub-components.218

For 3D datasets, this scheme introduces modest levels of data redundancy in order to properly219

encode directional/angular data. One of the major incentives to consider curvelets is their ability220

to express orientation versus its predecessors. Although curvelets have proven to be superior in221

the field of 2D image processing, similar areas have not been fully explored in 3D turbulence.222

Directional structures embedded in the velocity gradient tensor or related to constant active scalar223

surfaces present in 3D turbulent flows may lend themselves in structure and orientation to the224

curvelet transform. Opposite to wavelets, curvelets take a bottom-up approach in extracting coef-225

ficients. The largest, coarsest coefficients are first extracted in the first bands of the decomposition226
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Figure 1: Discrete Curvelet. The continuous curvelet transform is discretized in Fourier space for each dimension

ω. Directional wedges are darkened in both figures where (a) 2-D frequency tiling is performed along with (b) 3-D

frequency tiling. Figure is reproduced from [1].

and the smallest, finest coefficients are in the highest bands. Curvelets have been used for geomet-227

ric analysis of turbulent data by Ma et al. [4] and Bermejo-Moreno and Pullin [5].228

2.4. Surfacelets229

The surfacelet transform uses a combination of directional filter banks and contourlets in order230

to represent signal singularities that lie on smooth surfaces. In order to analyze multi-dimensional231

signals for multiple scales and directions, the directional filter bank (DFB) was proposed by Bam-232

berger and Smith for 2-D signals [32]. The DFB is a tree-structured decomposition that creates 2k
233

sub-bands with directional partitioning as in Fig. 2(a). The value k is defined with respect to the234

number of directions to be extracted. Do and Vetterli later constructed contourlets by combining235

the DFB with a Laplacian pyramid structure [33].236

Previously restricted to 2D, these directional filter banks were extended into higher dimen-237

sions creating the N-dimensional directional filter bank (NDFB) by Lu and Do [2]. The surfacelet238

transform combines the extension of contourlets to 3-D space and the NDFB in order to repre-239

sent surface-like singularities in multidimensional data. The NDFB uses a frequency partitioning240

scheme that resembles rectangular-based pyramids radiating out from the origin in different di-241

rections and multiple tiles as seen in Fig. 2(b). Similar to curvelets, the surfacelet partitioning is242

defined in Fourier space. Each direction is represented by a number as seen in Fig. 2(a) within243
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Figure 2: Discrete Surfacelet. Surfacelet frequency tiling of the N-dimensional filter bank (NDFB) in Fourier space

bounded by π on each dimension ω. (a) Discrete 2D tiling for each numbered angular direction. (b) Discrete 3D tiling

highlighting a single angular direction. Figure is reproduced from [2].

Fourier space. The inclusion of higher dimension filter banks allows surfacelets to have the fol-244

lowing distinct properties: directional decomposition and construction, angular resolution, perfect245

reconstruction and small redundancy [2].246

One of the features of surfacelets is the frequency partitioned directional filter bank with multi-247

ple levels in a tree-like structure. As opposed to curvelets, a single directional signal is spread out248

across its domain requiring the extraction of a lesser number of coefficients. The introduction of249

this filter bank allows aliasing to occur for each band in the frequency domain as opposed to being250

restricted to alias-free bands in curvelets. Due to the alias-free restriction, curvelets may require251

much more bands and coefficients to capture certain frequencies. By utilizing the tree-structured252

NDFB, aliasing can be removed in surfacelets by combining multiple levels and overall producing253

a less redundant extraction of coefficients compared to curvelets. The surfacelet transform has254

not been previously tested in the context of turbulence. The ability of identifying and preserving255

rough surfaces could make this transform well suited for representing material fields in turbulent256

flow datasets.257

2.4.1. Orthogonality258

Orthogonality is an attractive feature in mathematical transforms since it infers energy preser-259

vation. The wavelet families that are fully orthogonal in this analysis are the Haar, Daubechies260

and Coiflet families. The B-spline wavelets lose orthogonality due to their signal and become261
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biorthogonal. Dual-tree wavelets contain two biorthogonal filter sets with slightly different fre-262

quency responses. When combined, the two biorthogonal filters can become near orthogonal263

through the use of long filters leading to a higher computation penalty. Curvelets contain an or-264

thogonal wavelet component during their directional, finest-scale decomposition but overall are265

not orthogonal. Candes et al. [1] claim that curvelets behave similar to an orthogonal decompo-266

sition but are unable to prove it. Surfacelets, like curvelets, are only orthogonal at their lowest267

directional component but not in their entirety. The issue of needing orthogonal wavelets is not268

a priority in our analysis since the preservation of turbulence structures is prioritized over full269

preservation of energy. In Ref. [24], it is stated that a drawback of using non-orthogonal wavelet270

methods is a loss in energy. It is shown below that non-orthogonal methods still preserve a large271

portion of energy and do better in representing smooth structures compared to orthogonal methods272

that lack directionality support.273

2.4.2. Complexity and redundancy274

Complexities are unknown for higher-order methods such as curvelets and surfacelets but they275

are much higher compared to the other wavelets. Since they are based on discretizations of con-276

tinuous signals, Haar, B-spline, Daubechies and Coiflet wavelets are of linear complexity O(N)277

where N is the total number of points in the data. The efficiency of any method can be asserted by278

observing its redundancy.279

Redundancy represents a combination of computational effort and space consumption. Redun-280

dancy can also be seen in the number of coefficients extracted and comparable to the ratio between281

the total number of elements in a dataset and the number of coefficients extracted. The number of282

coefficients extracted and ratios for a sample 5123 dataset are shown in Table 1.283

While Haar, B-spline, Daubechies and Coiflet wavelets have a redundancy near 1, surfacelets284

and Dual-tree wavelets have a redundancy of about 3 to 4 in the 3-D scale. Curvelets also have285

a redundancy between 4 to 5 if they use wavelets for their finest scale, or 40 if they use curvelets286

again. Curvelets and surfacelets are more redundant due to their native multi-resolution storage287

components and Dual-tree wavelets due to the capture of directional features. Although this is the288

case, the curvelet, surfacelet, and Dual-tree wavelet implementations with the lowest redundancy289
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Method # of coefficients extracted Ratio

Source Grid 134,217,728 1.00

Haar 134,217,728 1.00

Linear B-spline 138,553,029 1.03

Quadratic B-spline 136,538,751 1.02

Cubic B-spline 142,978,473 1.07

Quartic B-spline 145,512,802 1.08

Quintic B-spline 152,517,105 1.14

Daubechies-3 138,553,029 1.03

Method # of coefficients extracted Ratio

Daubechies-5 142,978,473 1.07

Daubechies-7 147,717,100 1.10

Coiflet-6 138,553,029 1.03

Coiflet-12 145,512,802 1.08

Coiflet-18 152,517,105 1.14

Dual-Tree 536,870,720 4.00

Surfacelet 459,538,432 3.42

Curvelet 553,095,117 4.12

Table 1: Coefficients. Number of extracted coefficients and ratio compared to the total grid points of a 5123 dataset.

are used for the course of this paper. To formulate a fair comparison, a number of four directional290

bands for curvelets is used and matched by surfacelets. For further tests which measure the amount291

of the energy acquired per each band, the number of extracted bands is increased to better measure292

the energy distribution per band for both methods. Our redundancy evaluations are similar to those293

presented in Ref. [2].294

2.4.3. Coefficients and their storage components295

Haar, B-spline, Daubechies and Coiflet wavelets have no specific multi-band coefficient ex-296

traction scheme and therefore typically decompose N3 coefficients, where N is the grid size in297

each direction. The implementations used in this paper support wavelet signal extrapolation on298

boundary data through symmetrization. This results in numbers of coefficients slightly larger than299

a ratio of 1.0 compared to the original dataset but also in much more accurate representations of300

the boundaries. Curvelets and surfacelets require multi-band storage schemes and, therefore, they301

extract many more coefficients, as suggested by their redundancy amounts. Similarly, Dual-tree302

wavelets are also very redundant since they also extract four sets of directional coefficients per303

scale. Curvelet coefficients are stored with respect to their extraction based on their frequency304

partitioning per scale and direction. Surfacelet coefficients are similarly stored but differ in par-305

titioning schemes in scale and direction compared to Curvelets. Table 1 shows the number of306

extracted coefficients in the system for our sample dataset.307
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3. Implementation and thresholding techniques308

For this paper, the discrete variants of all of the methods are utilized. The original software309

provided by the respective authors of each method is used, except for B-spline, Daubechies and310

Coiflet wavelets. Although some methods such as curvelets provide parallel and out-of-core meth-311

ods to increase the computation speed which may be beneficial in high performance computing312

environments, the single threaded implementations of all methods is used for fair compute bench-313

marks. Haar Wavelets, B-spline, Daubechies and Coiflet wavelets are tested through the GNU314

Scientific Library (GSL). The GSL was modified to add support for 3D wavelet decomposition,315

as well as expand the variety of wavelets supported. All methods use their C++ variants and are316

compiled in Windows 7 Professional 64-bit using Microsoft Visual Studio 2008.317

The term thresholding is used to summarize the act of selecting distinct coefficients, after a318

decomposition operation, using a certain criterium. In general, the magnitude of these coefficients319

for all transforms represents the energy for that specific component. Typical thresholding is done320

by considering a set of coefficients where all values are sorted by magnitude. Once sorted, a subset321

of coefficients may be chosen by percentage or by a specific number. Hard thresholding is defined322

by the selection of only specific coefficients and removing the rest. This approach is utilized for323

the extent of this paper when comparing the different representation methods. Hard thresholding324

is used either a priori or, after domain-specific knowledge of the data is gained, the coefficients are325

thresholded for specific magnitudes above a certain value.326

For this paper, the decomposition of the original turbulent fields into coherent/incoherent parts327

is targeted in addition to the ability of the multi-resolution methods to reproduce turbulence struc-328

tures with a minimal set of coefficients. The ansatz that the coherent, non-universal part of the flow329

can be captured with a reduced set of coefficients and, thus, does not require the representation330

and preservation of the highest frequency, smallest coefficients is tested. In representations and331

analysis of developed turbulence, the hope is that these coefficients correspond to some universal332

properties (often understood and describable as white noise).333

Specialized optimal values for thresholding are only available for orthogonal methods and334

Gaussian noise [3, 24]. For example, the maximum quadratic error, E|| f̂ − f ||22,N/N, between the335

14



denoised signal, f̂ , and the original signal, f , can be minimized using the minimax threshold [46].336

Here, ||v||22,N denotes the usual l2
N norm and N is the resolution. For large data samples, this thresh-337

old approaches its upper bound defined by ε = (2σlnN)1/2, where σ is the variance of the noise.338

For turbulence data, however, the noise is likely not identically distributed Gaussian (both spatial339

correlation and non-Gaussian PDF are likely present) and the noise level is not known a priori.340

In order to compare the methods considered, the hard thresholding of the coefficients based341

on the percentage of coefficients in the system is used. The minimax threshold was derived for342

selected orthogonal methods and approximated to be below 0.5% coefficients. Due to the large343

differences in the ratio of captured kinetic energy between methods, a larger percentage amount344

was selected for a fairer comparison. As in Ref. [3], comparisons are made after the selection of345

3% coefficients. However, unlike CVS type decompositions, where the vorticity field is decom-346

posed, thresholded and then reconstructed, while the coherent and incoherent velocity parts are347

obtained from the corresponding vorticity parts via the Bio-Savart law, here, the thresholding is348

performed on the decompositions of the primary variables, velocity and density. The motivation,349

described in the Introduction, follows from the applications considered in the comparison of the350

methods: LES-type simulations of more general flows than incompressible single-fluid turbulence351

and turbulence data compression for storage, analysis and visualization.352

Fig. 3 compares the amounts of kinetic energy and density variance captured by several of the353

methods, as a function of the percentage of the coefficients. The ratios to the kinetic energy and354

density variance in original fields show that, even at low percentage of coefficients, both quantities355

can be well captured. Large gains in accuracy occur up to 1% coefficients, when all methods356

capture more than 98% of the kinetic energy and 96% of the density variance; the further increase357

in the number of coefficients above 1% results in smaller accuracy gains. Both surfacelets and358

curvelets are able to more accurately capture the kinetic energy below extreme percentages of359

0.4% coefficients but are then overtaken by other methods. The 3% coefficient mark ensures that360

the kinetic energy captured exceeds 99% and density variance exceeds 98% for all methods. The361

remaining 97% coefficients are also computed to estimate the residual coherence or departure from362

a Guassian, white noise.363

Hard thresholding at equivalent percentage of coefficients is a good indicator of the potential364

15



10
−1

10
0

10
1

0.94

0.95

0.96

0.97

0.98

0.99

1

% coefficients

T
ot

al
 K

in
et

ic
 E

ne
rg

y

 

 

Haar
Cubic
Surfacelet
Curvelet
Daub−5
Coiflet−12

 

 

               .
               .
               .
               .
               .
               .

(a)

10
−1

10
0

10
1

0.88

0.9

0.92

0.94

0.96

0.98

1

% coefficients

T
ot

al
 D

en
si

ty
 V

ar
ia

nc
e

 

 

Haar
Cubic
Surfacelet
Curvelet
Daub−5
Coiflet−12

 

 

               .
               .
               .
               .
               .
               .

(b)

Figure 3: Total kinetic energy and density variance. The ratios of total kinetic energy (a) and density variance from

the original data compared to the compressed fields by percentage of coefficients. Large gains in accuracy occur up to

1% coefficients, when all methods capture more than 98% of the kinetic energy and 96% of the density variance.

of the different transforms considered in this paper. For Haar, B-spline, Daubechies and Coiflet365

wavelets, which do not have explicitly defined multi-bands, the coefficients can be ordered and366

thresholded without ambiguity. However, in general, transforms with multi-band support decom-367

pose into a series of coefficients for multiple bands. These bands are further subdivided into a368

larger series of angular directions. These transforms also extract real and complex coefficients.369

These features add additional layers of complexity and expand the capabilities of thresholding370

coefficients. The same number of bands and number of directions are extracted when comparing371

both surfacelets and curvelets.372

More advanced thresholding schemes were tested for these multi-band methods, including the373

localization of features by scale and direction. Due to the difference in directional representa-374

tion of each method, to perform a fair comparison, coefficients are thresholded by their largest375

magnitudes as a whole per direction and bands. Although thresholding coefficients per individual376

band or per angle may be more intuitive in finding specific features, reconstruction behavior is377

more consistently obtained when considering all coefficients as a whole. Each method has various378

parameters that change their functionality such as number of bands to decompose and variables379

related to the behavior of their filters. More modern, higher-order methods such as curvelets and380
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surfacelets contain band systems with multiple levels of redundancy in order to capture angularity381

based on their filter type.382

Due to each method having different filters, basis functions and lack of complete orthogonality,383

the relation between coefficients from different methods with respect to a given frequency is not384

trivial. Such a relation can be estimated by performing a power spectrum analysis in Fourier space,385

which is also covered in the results section.386

4. Results and discussion387

4.1. Test types and definitions388

A series of tests are performed that compare the compressed datasets to the originals for quan-389

tities related to the velocity and density fields. For the velocity field, the comparison metrics used390

are the PDF of the velocity field itself and of enstrophy (Ω ≡ |~ω|2), as well as enstrophy peak391

signal-to-noise ratio (PSNR) and mean square error (MSE) and the PDF of the unbiased mea-392

sure of the state of the deviatoric strain rate tensor, s∗ [41]. For the density field, the comparison393

metrics used are the density PSNR and MSE, density power spectrum, coherent/incoherent repre-394

sentations of the density field itself and iso-density surface corresponding to the pure light fluid.395

The pure light fluid iso-density surface is also characterized using several differential geometry396

tools: surface area, mean and Gaussian curvatures as well as the surface signature.397

Previous comparisons related to the coherent/incoherent decompositions of turbulent fields398

have been restricted to orthogonal and biorthogonal (Harten) wavelets as applied to velocity and399

enstrophy PDFs, kinetic energy spectrum and the PDF of helicity and Lamb vector (e.g. [24]).400

While CVS type decompositions have been mainly used to investigate the coherent/incoherent401

parts of the flow, here the decomposition is performed at the level of the primary variables, velocity402

and density. This approach is not entirely new, for example it is the base of the SCALES method403

[9] and has also been used for the analysis of a passive scalar [5]. Here, the results presented404

address a more complex flow and encompass more representation methods, with more quantities405

related to the velocity field (e.g. the state of the deviatoric strain rate tensor) and, for the first time,406

quantities related to an active scalar field and its constant property surfaces.407
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For all tests, the strongest 3% coefficients are referred to as defining the coherent part and408

the weakest 97% coefficients as defining the incoherent (residual) part of the respective turbulent409

quantity. A subset of methods are compared looking at the progression of reconstruction for the410

number and percentage of coefficients. It is noted that the relationship between percentage and411

number of coefficients is not the same for all methods as some methods such as curvelets and412

surfacelets may extract many more coefficients compared to the B-spline wavelets. The subset of413

methods include Haar, cubic B-spline, Daubechies-5, Coiflet-12, Dual-tree wavelets, surfacelets,414

and curvelets. For clarity, Dual-tree wavelets are only added in a subset of the figures, especially415

where they excel beyond the other methods; nevertheless, they are added in all the tables. These416

methods were selected as representative for each class of methods considered.417

Finally, the last set of tests evaluate the performance and memory requirements of each of418

the methods. The performance is evaluated based on the runtime of each transform during its419

decomposition phase for a single scalar field. Only the single-threaded variant of each of the420

methods is considered. The hardware used to perform these tests contains an Intel Core i7 930421

processor running at 3.80GHz and 48GB of DDR3 RAM.422

4.1.1. Definitions and discussion on the quantities used for comparisons423

The definitions and short explanations for the various test metrics and turbulence quantities424

used in this paper are given below.425

PSNR in Eq.(1) is the primary measurement to evaluate point-wise accuracy. The signal-to-426

noise-ratio (SNR) was used in Ref. [39] in a similar analysis to compare the effects of compression427

on data. PSNR is used in this paper rather than SNR since it better reproduces the behavior of428

the representation methods over all percentages of coefficients thresholded. MSE is superior in429

showing the behavior at lower percentages with the eventual drop-off to zero due to numerical430

precision.431

PS NR = 10 · log10

(
MAX2

MS E

)
, (1)

where MAX is the maximum possible value in the range of the data and MS E is the mean432

square error.433
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Velocity (~u) and vorticity (~ω ≡ ∇ × ~u) PDFs have been been used to ascertain the ability of434

orthogonal and B-spline wavelets to decompose turbulence fields into coherent and incoherent435

parts in Ref. [24]. This was accomplished by comparing the PDFs corresponding to the fields436

reconstructed using the largest 3% of the coefficients with the PDFs of the original signal and the437

PDFs corresponding to the fields reconstructed using the remaining 97% of the coefficients with a438

Gaussian. While these quantities, together with the helicity (~u · ~ω) and Lamb vector (~u × ~ω), are439

useful in assessing the representation of turbulence with a limited number of coefficients, they do440

not fully address the local structure of turbulence and, thus, the incoherence of the turbulence data.441

Therefore, here, we also consider the quantity s∗, which uniquely defines the state of the deviatoric442

strain rate tensor for incompressible flows [41]:443

s∗ =

 −3
√

6αβγ(
α2 + β2 + γ2)3/2

 , (2)

where α, β and γ are the eigenvalues of the deviatoric strain rate tensor, S ≡ 1/2(∇~u + (∇~u)T ),444

or by components, S i j = 1/2(∂ui/∂x j + ∂u j/∂xi). For the flow considered here, the divergence of445

the velocity is not zero, but it is small at the time when the flow is being analyzed. In addition, the446

enstrophy PSNR and MSE are also shown.447

The pure light, pure heavy and mixed fluid regions are defined as all the points with density448

values satisfying the relations [14]:449

ρ ≤ ρ1 + 0.05 (ρ2 − ρ1) , (3)

ρ ≥ ρ2 − 0.05 (ρ2 − ρ1) , (4)

0.45 (ρ2 − ρ1) ≤ ρ ≤ 0.55 (ρ2 − ρ1) , (5)

where ρ1 and ρ2 are densities of the two pure fluids. For comparing the different representation450

methods, in this paper we focus on the surface bounding the pure light fluid regions, which is451

defined by the formula ρ(x, y, z) = ρl ≡ ρ1 + 0.05 (ρ2 − ρ1). This surface is visualized using the452

coherent and incoherent parts of the density field. In addition, the ability of the representation453
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methods to capture the surface area, mean and Gaussian curvatures and surface signature with a454

reduced set of coefficients is also discussed. The area of the surface defined by ρ(x, y, z) = ρl can455

be calculated using Theorem 1.2.4. from Ref. [42], by replacing the Borel measurable nonnegative456

function Φ with the delta function, δ(ρ(x, y, z) − ρl), to obtain:457

S Aρl =

∫
Ω

|∇ρ|δ(ρ − ρl) dv. (6)

If one further assumes homogeneity of the flow, so that averages can be calculated as volume458

averages, then S Aρl =< |∇ρ||ρ=ρl > f (ρl)V , which is the product of the conditional average of the459

density gradient magnitude and density PDF at f (ρ(x, y, z)) = f (ρl), and the total volume of the460

flow. For a uniform discrete representation of the data, as obtained from DNS, the surface area461

formula becomes462

S Aρl =

( ∑
||∇ρ||

n (ρmax − ρmin)

)
(2π)3 , (7)

where n is the ratio between the total number of points, N, and the number of bins, nb, used463

to calculate the density PDF. The discretization errors becomes small for large values of n, nb.464

Following Ref. [5], the surface signature is defined as the joint PDF of the absolute value of the465

shape index, S , and curvedness, C:466

S =

∣∣∣∣∣∣
(
−2
π

)
tan−1

(
H

√
H2 − K

)∣∣∣∣∣∣, (8)

C =
√

2H2 − K, (9)

where H and K are the mean and Gaussian curvatures. Since the same surface is considered for467

all the representation methods and this surface may be multiply connected, the curvedness is not468

normalized using the surface area and volume as done in Ref. [5].469

4.2. Quantities related to the velocity field470

In this section, quantities related to velocity field are compared for the representation methods471

discussed, with respect to their ability to separate the flow into coherent and incoherent parts and472
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represent the turbulence structure with a reduced set of coefficients. Some of the quantities con-473

sidered here (velocity and enstrophy PDFs) have been investigated in previous studies; however,474

only the orthogonal (Coiflet) and bi-orthogonal (Harten) wavelets have been explored. Here, we475

calculate these quantities as a consistency check with the previous studies and also for compari-476

son with the additional representation methods considered. In addition, several new metrics are477

examined to better assess the capturing of the local turbulence structure.478

4.2.1. Velocity probability density function479

The velocity PDF itself is Gaussian in most fully developed turbulent flows and this is reflected480

in the PDF of the fields obtained from the largest 3% of the coefficients obtained for all methods481

considered here (not shown). Figure 4 compares the PDFs of the residual vertical velocity PDF482

for a subset of the methods, which includes one method for each of the classes considered. All483

methods yield symmetrical residual velocity PDFs; however, Haar and curvelet transforms lead to484

exponential shapes, while the others are closer to Gaussian shapes. The Kurtosis values are: 6.13485

(Haar), 6.44 (cubic B-spline), 4.62 (surfacelet), 7.10 (curvelet), 5.79 (Daubechies-5), and 6.10486

(Coiflet-12). In addition, the field’s extrema are the smallest for the cubic B-spline, with relatively487

close values for the other high order wavelet methods. The surfacelet transform has slightly larger488

extrema, but still in the range of the higher order wavelets, while the curvelets and Haar wavelets489

have much larger extrema. Thus, while there is no bias towards positive or negative values, the490

residual still retains large velocity values.491

4.2.2. Vorticity peak signal-to-noise ratio and mean square error492

Velocity PDF, while useful as a first metric to assess the residual part of the velocity field, does493

not contain any spatial information. The next quantity considered for assessing the representation494

methods is the vorticity. Fig. 5 shows the PSNR for enstrophy (vorticity square) as a function of495

the percentage of coefficients retained. In this case, the signal is obtained from three lossy scalar496

components, as each velocity direction is separately represented, then each vorticity component is497

calculated from the reconstructed velocities. The cubic B-spline wavelets are observed to have the498

highest overall reconstruction accuracy spanning percentages above 10% coefficients.499
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Figure 4: Residual velocity PDF. The PDF is obtained from the remaining 97% coefficients in the vertical velocity

transform. Two Gaussian signals matching the variances of the curvelet and B-spline wavelet results are plotted.

Table 2 shows several numerical results for 3% of the coefficients retained (coherent part). All500

the B-splines methods above linear show consistently high values for PSNR and low values for501

MSE and maximum error (L∞ norm), with the best results obtained for cubic B-splines. Overall, all502

wavelets methods give close results (except the Haar wavelets, which is expected), with slightly503

worse values obtained for Daubechies and Coiflets (in this order). The surfacelets yield results504

within the range of Coiflets (but worse than higher order Coiflets) and curvelets show the largest505

point-wise departure from the original signal (in all three metrics considered in Table 2) for 3% of506

coefficients retained. Interestingly, for each family there is an optimal order which yields the best507

point-wise representation, so that further increasing the order of the method starts to deteriorate508

the results. Thus, the discrete signal in lower families tends to not have enough representation509

to capture the original field while the higher order representations within each family introduce510

oscillations which reduce the overall quality.511

The main focus for the remaining tests will be on the subset of representation methods, con-512

sisting of Haar, cubic B-splines, Daubechies-5, Coiflet-12, Dual-tree wavelets, surfacelets and513

curvelets. The 3% thresholding for the velocity representation captures 94.4%, 99.4%, 99.6%,514

99.6%, 98.1%, 97.7%, and 95.4% (respectively) of the total enstrophy for this subset. Within each515
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Figure 5: Enstrophy PSNR as a function of the percentage of coefficients (a) and number of coefficients (b) retained

for reconstruction. Higher PSNR values represent a more accurate point-wise reconstruction. Cubic B-splines have

the highest quality through all percentages and number of coefficients.

class of the methods, the total vorticity captured using this thresholding generally increases as the516

order of the method increases, but decreases using the highest methods.517

4.2.3. Vorticity probability density function518

Vorticity PDF, computed for the remaining 97% coefficients, is shown in Fig. 7. Similar to519

velocity, all methods yield symmetrical residual PDFs. Haar and curvelet transforms lead to wide520

tails shapes, while the others have sharper shapes, but still different than Gaussian. The Kur-521

tosis values are: 7.415 (Haar), 9.27 (Cubic B-spline), 8.72 (Surfacelet), 23.9 (Curvelet), 8.26522

(Daubechies-5), and 8.70 (Coiflet-12). The field’s extrema are the smallest for the cubic B-spline,523

with relatively close values for the other high order wavelet methods. The moderate increase in524

family order for B-splines achieved the smallest extrema compared to constant B-splines (Harten-525

3) used in Ref. [24]. The surfacelet transform has slightly larger extrema, but still in the range of526

the higher order wavelets, while the curvelets and Haar wavelets have much larger extrema. Sim-527

ilar to velocity, while there is no bias towards positive or negative values, the residual still retains528

large vorticity events.529
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Figure 6: Enstrophy MSE variation with the percentage of coefficients retained for reconstruction. Lower MSE val-

ues represent a more accurate point-wise reconstruction. Cubic B-splines have the lowest MSE at very low percentages

of coefficients, but are matched by Daubechies-5 and Coiflet-12 wavelets at higher percentages.

4.2.4. The state of the deviatoric strain rate tensor530

Previous studies, while examining several wavelet transforms for their ability to represent531

quantities related to the velocity field, have not investigated in detail the local structure of tur-532

bulence. The state of the strain rate tensor can identify the tendency of the flow to organize in533

certain types of structures (e.g. stable-focus/stretching or unstable-node/saddle/saddle) character-534

istic of fully developed turbulence [44, 43] and may be a better indication of the residual coherence535

than velocity or vorticity PDFs. One quantity which can uniquely define the state of the deviatoric536

strain rate tensor, s∗, Eq. (2), was first derived in Ref. [41]. For most fully developed turbulent537

flows, the PDF of s∗ peaks at 1, while it becomes flat for a Gaussian signal. Therefore, a struc-538

tureless incoherent part of the flow should exhibit a flat s∗ PDF; while the departure from a flat539

PDF indicates that the residual is not structureless. Fig. 8 shows the PDF of s∗ for the velocity540

field reconstructed from the remainder 97% of the coefficients and the skewness and kurtosis of541

the PDFs are tabulated in 3. A flat PDF has skewness zero and kurtosis equal to 1.8. We ob-542

serve that for most methods, the remaining signal is mostly Gaussian noise in the remaining 97%543

coefficients. The method closest to a flat s∗ PDF is the quadratic B-splines, while surfacelets and544
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Method PSNR MSE Max Error

Haar 48.786 1.9921x10−8 5.1897x10−2

Linear B-spline 60.691 1.3756x10−8 0.9685x10−2

Quadratic B-spline 63.692 0.6893x10−8 0.8786x10−2

Cubic B-spline 64.030 0.6377x10−8 0.7181x10−2

Quartic B-spline 63.645 0.6969x10−8 0.7374x10−2

Quintic B-spline 62.099 0.9947x10−8 1.1021x10−2

Daubechies-3 61.437 1.1586x10−8 0.7198x10−2

Daubechies-5 63.010 0.8065x10−8 0.8216x10−2

Method PSNR MSE Max Error

Daubechies-7 61.784 1.0695x10−8 1.2053x10−2

Coiflet-6 57.632 2.7824x10−8 1.2457x10−2

Coiflet-12 61.865 1.0499x10−8 0.9154x10−2

Coiflet-18 61.504 1.1407x10−8 1.0614x10−2

Dual-Tree 60.132 1.5648x10−8 1.3191x10−2

Surfacelet 59.319 1.8867x10−8 1.1105x10−2

Curvelet 52.929 8.2165x10−8 4.8001x10−2

Table 2: Enstrophy comparison at 3% coefficients. The methods with the most accurate properties are represented

in bold. Cubic splines have the best point-wise characteristics for enstrophy representation compared to any other

method using these metrics.

curvelets present the largest departures from a flat PDF.545

4.3. Quantities related to the density field546

Previous comparisons between representation methods have been focused on quantities related547

to the velocity field only. Since many flows occur in the presence of passive or active scalars, here548

we are also comparing the representation methods with respect to their potential to separate the549

scalar field into coherent and incoherent parts and represent the structure of the field with a reduced550

set of coefficients.551

In this flow, the scalar (density) is an active scalar, since the differential buoyancy force which552

drives the turbulence is generated by the variations of density. Since density comparisons have not553

been performed before, visualizations of the density field itself and constant density surfaces are554

also shown, together with the tools considered above, namely PSNR, MSE and PDFs. The ability555

of the representation methods to reproduce the density power spectrum with a limited number of556

coefficients is also discussed. For the surfacelet and curvelet transforms, the power spectra are557

calculated for each band separately, which shows the wavenumbers captured by each band, as558

well as the overlap between bands. In order to characterize the representation of constant density559

surfaces, surface area, mean and Gaussian curvatures, as well as the surface signature are also560

calculated.561
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Figure 7: Residual vorticity PDF. The PDF is obtained from the remaining 97% coefficients in the vertical vorticity

transform. Two Gaussian signals matching the variances of the curvelet and B-spline wavelet results are plotted.

4.3.1. Density visualization562

The subset of the methods described above are visually compared by using the center 2D slice563

of the dataset (Fig. 9) and a log-difference map comparing this slice to the original (Fig. 10) for564

the density field reconstructed from the 3% largest coefficients. Except the Haar wavelets, which565

approximate curved variations by a staircase-like variation, the rest of the wavelet methods recon-566

struct the density field reasonably well. The closest results with the original dataset is obtained567

using cubic B-splines see also Fig. 10), followed by Daubechies-5, Dual-tree, surfacelets and568

curvelets (in this order). Both curvelet and surfacelet transforms show relatively large differences569

between the original field and the field reconstructed for the 3% percent largest coefficients.570

The residual parts based on the remaining 97% coefficients are also compared and visualized571

in Fig. 11. Similar to Fig. 10, Cubic B-spline wavelets perform the best, as they exhibit the572

least amount of residual density in their remaining coefficients. The Haar wavelet reconstruction573

contains the most remaining structures. Daubechies-5 and Dual-tree wavelets contain slightly574

more residual density than cubic B-splines. Relative to cubic B-splines, curvelet and surfacelet575

coefficients contain larger amounts of remaining structures. Between the two multi-band methods,576

the curvelets reconstruction leads to the least structureless residual density field.577

26



−1 −0.5 0 0.5 1
0.2

0.4

0.6

0.8

1

S∗

P
D

F

 

 

Haar
Quadratic
Cubic
Surfacelet
Curvelet
Daub−5
Coiflet−12
Gaussian

 

 

Figure 8: PDF of s∗ corresponding to the remaining 97% coefficients. Although all methods yield a near-horizontal

PDF, indicating a quasi-Gaussian white noise residual, quadratic B-spline wavelets are observed to have residual

signal closest to a Gaussian.

4.3.2. Density peak signal-to-noise ratio and mean square error578

Fig. 12 shows the PSNR variation as a function of the percentage and number of coefficients,579

while Fig. 13 shows the MSE variation for the subset of the methods defined above. As the num-580

ber or percentage of coefficients are increased, the amount of increase in accuracy is similar across581

all methods tested. Numerical results for all methods at 3% coefficients are presented in Table 4.582

Similar to vorticity PSNR and MSE, at low percentages of coefficients used in reconstruction, cu-583

bic B-spline wavelets are superior by having the highest PSNR and lowest MSE. The higher-order584

B-spline wavelets (quadratic, cubic, and quartic), in general, out-perform the rest of the methods585

tested. When comparing methods within each individual family at 3% coefficients, there is an586

observed parabolic behavior in reconstruction quality where the best reconstruction is achieved by587

using the middle members. These results are consistent to those obtained for vorticity, since the588

lower families tend to not have enough representation to capture the original density field, while589

the higher families introduce oscillations which reduce the overall quality of the representation.590

Surfacelets have the benefit of a PSNR that is close to B-splines and a low point-wise maxi-591

mum error while achieving multi-band functionality. As expected, curvelets perform better than592
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Method Skewness Kurtosis

Haar -0.018671 1.7837

Linear B-spline 0.000594 1.7502

Quadratic B-spline -0.010178 1.7970

Cubic B-spline -0.000261 1.7622

Quartic B-spline -0.000031 1.7774

Quintic B-spline -0.000402 1.7675

Daubechies-3 -0.002019 1.7605

Daubechies-5 -0.000803 1.7627

Method Skewness Kurtosis

Daubechies-7 -0.000893 1.7773

Coiflets-6 0.000221 1.7485

Coiflets-12 0.000523 1.7566

Coiflets-18 -0.000581 1.7663

Dual-Tree 0.005532 1.8299

Surfacelet -0.007940 1.9495

Curvelet -0.010240 1.9269

Table 3: Statistical properties of residual s∗. The methods with the best properties are represented in bold. Skewness

and kurtosis are computed for the remaining 97% coefficients for all methods. A flat PDF (corresponding to a Gaussian

noise residual) has a kurtosis of 1.8. All methods have skewness close to zero, while quadratic B-spline wavelets have

the kurtosis closest to 1.8.

Haar wavelets but not as well as the remaining methods. When increasing the number of coeffi-593

cients, curvelets do not surpass the PSNR quality of the alternative methods mainly due to the high594

levels of redundancy needed to support energy separation in bands and directional coefficients. By595

decreasing the number of bands, curvelets can be made to extract a smaller number of coefficients596

causing a left-ward shift of the PSNR plot. Even though this will increase the point-wise accuracy597

of the curvelet transform for a given percentage of coefficients, it will still be lower than that ob-598

tained using cubic B-spline wavelets. Daubechies wavelets generally perform better than Coiflets,599

but both are still below B-spline wavelets. When considering the accuracy for percentages of co-600

efficients above 20%, the highest member of B-spline wavelets family tested, quintic, is the most601

accurate.602

When instead comparing total number of coefficients, which is more relevant for compression603

and storage purposes, cubic B-spline wavelets once again provide the most accurate reconstruction604

using the least number of coefficients. The relative ranking in reconstruction quality from previous605

tests is observed again for quadratic, cubic, and quartic B-splines. These methods once again show606

slight improvement in accuracy when the number of coefficients is increased. Finally, due to the607

number of bands extracted causing high redundancy levels, the PSNR results for curvelets and608

surfacelets are generally worse than the rest of the methods. After a certain point, surfacelets609
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Figure 9: Density visualizations. 2D center slices for a subset of the methods are compared at 3% coefficients. From

left to right: original, Haar, cubic B-spline, Daubechies-5, Dual-tree wavelets, curvelets, and surfacelets. The white

iso-line represents the boundary of the pure-light fluid (blue). Haar wavelets perform noticeably worse and have

strong artifacts. The rest of the methods are able to better reconstruct the original field.

manage to overtake the accuracy results of Haar wavelets despite extracting significantly more610

coefficients. When comparing both band-based methods, surfacelets perform better than curvelets.611

4.3.3. Residual density probability density function612

Density PDF, computed for the remaining 97% coefficients, is shown in Fig. 14. Similar613

to velocity, all methods yield symmetrical residual PDFs. Haar and curvelet transforms lead to614

widest tails, while the other methods have narrower shapes, but still wider than a Gaussian. The615

Kurtosis values are: 8.00 (Haar), 6.63 (Cubic B-spline), 4.38 (Surfacelet), 5.53 (Curvelet), 5.79616

(Daubechies-5), and 6.20 (Coiflet-12). The field’s extremas are the smallest for the cubic B-spline,617

with relatively close values for the other high order wavelet methods. The surfacelet transform has618
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Figure 10: Density logarithmic difference between the original 2D center slice for methods at 3% coefficients and

plotted in a logarithmic scale. From left to right: Haar, cubic B-spline, Daubechies-5, Dual-tree wavelets, curvelets

and surfacelets. Haar wavelets have the most visible error, and cubic B-spline wavelets the least.

slightly larger extremas, but still in the range of the higher order wavelets, while the curvelets and619

Haar wavelets have much larger extremas.620

4.3.4. Density power spectrum and multi-band analysis621

In order to examine how the coherent and incoherent part of the density are distributed across622

scales, Figs. 15 and 16 compare the power spectrum at coherent 3% coefficients, and the remaining623

97% coefficients. All methods capture the large and part of the inertial range scales, and the results624

depart from the original spectrum at small scales. The wavelet methods introduce small scale625

noise, which translates into increased values at higher wave-numbers. Within each class, higher626

order methods capture better the high frequency features of the density field. The Dual-tree wavelet627

transform is able to provide the closest reconstruction, using 3% of the coefficients, to the original628
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Figure 11: Residual density visualization. The remaining density residing in the weakest 97% coefficients is shown

for Haar, Cubic B-spline, Daubechies-5 and Dual-tree wavelets, curvelets and surfacelets (left to right). Cubic B-

spline wavelets show the weakest structures in the remaining density. Curvelets and surfacelets extract many more

redundant coefficients, and their remaining structures are clearly visible.
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Figure 12: Density field PSNR as a functions of the percentage of coefficients (left) and number of coefficients

(right). Higher PSNR values represents a more accurate point-wise reconstruction. The cubic B-splines provide the

best accuracy at the lowest percentages and number of coefficients compared to other methods. Although not shown,

for larger percentages of coefficients retained (i.e. > 20%), within each class, higher order methods such as quintic

B-splines perform slightly better.

spectrum. The same order of B-spline family is able to achieve the next closest reconstruction.629

On the other hand, the surfacelet and curvelet transforms tend to smooth out the high frequency630

components and the resulting spectrum is lower than the original spectrum at high wave-numbers.631

Both methods also capture a large amount of energy in the remaining 97% coefficients due to their632

high redundancy.633

To compare the surfacelet and curvelet band systems with respect to the wavenumber coverage,634

a number of 6 bands are chosen, where band 0 represents the largest features and band 5 represents635

the smallest. As previously explained, a larger number of bands are used in this set of the calcula-636

tions to better distribute the energy and better measure the strengths of each method with respect to637

the coherent/incoherent decomposition and capture of the flow structure within each band. Except638

band 0, the curvelet bands are narrower than the surfacelet bands, providing more localization in639

wavenumber space (Fig. 17). This can be seen, quantitatively, from table 5 which measures the640

contribution of each band to the total density variance. As proposed by Pullin et al. [5], the inte-641

gral velocities for each band despite the different length of scales sum up to virtually 1 although642

regions overlap. This shows both methods, although overly redundant, are able to preserve energy643
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Figure 13: Density field MSE variation with the percentage of coefficients. Lower MSE values represent a more

accurate point-wise reconstruction. The error becomes indistinguishable for more than 10% coefficients used in the

reconstruction. The results show that cubic B-splines have the lowest MSE at very low percentages of coefficients.

well when factoring in all bands. From the point of view of flow analysis, the narrower curvelet644

bands may allow better representation of specific flow structures associated with certain frequen-645

cies. However, the wider bands surfacelets provide lead to better overall representation of the data646

in terms of percentage of coefficients as seen in Fig. 12 above.647

4.3.5. Pure light fluid isosurface visualization648

So far, the performance of the representation methods has been investigated with respect to649

describing various turbulent fields and their separation into coherent and incoherent parts. How-650

ever, in turbulence problems involving scalar mixing, e.g. pollutant dispersion or non-premixed651

combustion, accurately capturing constant property surfaces is also very important. Fig. 18 visu-652

alizes isosurfaces of pure light fluid obtained using the reconstruction based on 3% coefficients.653

Although the wavelet methods may have higher point-wise PSNR, the curvelet and surfacelet iso-654

surfaces are much smoother and very near to the original dataset. Both curvelets and surfacelets655

sacrifice point-wise accuracy in exchange for superior curved structure representation.656

Among the other methods, the Haar wavelets have the coarsest representation of isosurfaces,657

as expected. The representation becomes very blocky and it has the highest visible difference658

compared to the original isosurfaces. The coarsening effect is amplified when derivatives are cal-659
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Method PSNR MSE Max Error

Haar 30.114 1.0791x10−5 5.0793x10−2

Linear B-spline 37.940 1.7807x10−6 1.9407x10−2

Quadratic B-spline 41.095 8.6113x10−7 1.4169x10−2

Cubic B-spline 41.282 8.2476x10−7 1.1944x10−2

Quartic B-spline 40.553 9.7552x10−7 1.1424x10−2

Quintic B-spline 39.753 1.1729x10−6 1.4073x10−2

Daubechies-3 38.029 1.7442x10−6 1.5653x10−2

Daubechies-5 39.858 1.1449x10−6 1.5414x10−2

Method PSNR MSE Max Error

Daubechies-7 39.142 1.3502x10−6 1.6532x10−2

Coiflet-6 34.760 3.7028x10−6 2.2010x10−2

Coiflet-12 38.860 1.4406x10−6 1.4867x10−2

Coiflet-18 38.830 1.4505x10−6 1.5929x10−2

Dual-Tree 39.020 1.3884x10−6 1.4690x10−2

Surfacelet 38.169 1.6892x10−6 1.3875x10−2

Curvelet 33.075 5.4580x10−6 2.8111x10−2

Table 4: Density comparison at 3% coefficients. The methods with the most accurate properties are represented in

bold. The cubic B-splines have the Cubic splines have the best point-wise characteristics for enstrophy representation

compared to any other method using these metrics. Although not as accurate from the point of view of PSNR and

MSE, quartic B-splines exhibit a more consistent maximum point-wise error throughout the entire dataset.
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Figure 14: Residual density PDF. PDF for the remaining 97% coefficients. Two Gaussian signals matching the

variances of the curvelet and B-spline wavelet results are plotted.
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Figure 15: Density power spectrum for the coherent density field. The k−5/3 variation is also plotted for comparison.

A close-up for higher wavenumbers is provided in b).
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Figure 16: Density power spectrum for the residual density. The k2 variation corresponding to a Gaussian signal is

also plotted. A close-up for higher wavenumbers is provided in b).
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Figure 17: Density power spectrum band-based decomposition using six bands for (a) curvelets and (b) surfacelets.

Higher level surfacelet bands are wider compared to those of curvelets.

Band Surfacelet < ρ′2 >i/< ρ
′2 > Curvelet < ρ′2 >i/< ρ

′2 >

Original 1.0000000 1.0000000

0 0.6785391 0.8000469

1 0.2080657 0.1447320

2 0.0861972 0.0465525

3 0.0237471 0.0080909

4 0.0032868 0.0005679

5 0.0001637 0.0000095

Table 5: Band contribution to density variance.
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culated making the Haar wavelets unsuitable for the preservation of constant property surfaces.660

Although cubic B-splines, Daubechies, and Coiflets are able to reproduce smoother surfaces than661

Haar wavelets, there are visible ripples in the isosurface visualization related to the sinusoidal-like662

reconstruction signal that these methods are representing (seen in Fig. A.21 in the Appendix). In663

comparison, curvelets, surfacelets and Dual-tree wavelets, which are designed to preserve smooth664

structures, perform much better. The exchange of point-wise accuracy for smooth structure preser-665

vation by these methods can be seen by comparing Fig. 10, showing the log-difference of the 2D666

slice, and Fig. 18, showing the pure light fluid isosurface. Surfacelets are able to provide the667

smoothest reconstruction at 3% coefficients with the lowest difference to the original visualiza-668

tion.669

4.3.6. Pure light fluid isosurface area, mean and Gaussian curvatures670

In addition to qualitative results by visually comparing the smoothness of isosurfaces, quanti-671

tative assessments can also be made using differential geometry tools. In this section, the surface672

area and average mean and Gaussian curvatures for the light and fully mixed isosurfaces obtained673

using the largest 3% of the coefficients are compared with the original field, while in the next sec-674

tion the surface signature is discussed. The averages are calculated as sums over all points on the675

surface divided by the number of points. The definitions and formulas used are given in section676

4.1.1. Table 6 shows the ratios of this quantities to the original dataset for all methods consid-677

ered. Values closer to 1 indicate better quality of the reconstruction. In general, the surface area678

is relatively well captured by all methods (with larger departures from the original for the light679

fluid isosurface), while the average mean and Gaussian curvatures can be significantly under- or680

over-predicted without an overall winner. Even though surfacelets and curvelets show smoothest681

surfaces, they can still miss both the surface area and average curvatures.682

At the time during the flow evolution when the methods are compared, there is relatively little683

pure light fluid left, while the fully mixed fluid occupies a larger volume. Consequently, the surface684

area of the mixed fluid isosurface is overall better captured by all methods. The large blockiness685

in the Haar wavelets representation of constant property surfaces can be clearly seen in the large686

departures from 1 in all entries of table 6. For the pure light fluid isosurface, again, within each687
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Figure 18: Density Isosurface comparison. Isosurfaces representing the pure light fluid are constructed using the

largest 3% coefficients. From left to right: original, Haar, cubic B-spline, Daubechies-5, Dual-tree wavelets, curvelet,

and surfacelet transforms. Haar wavelet isosurfaces are extremely blocky. Surfacelets and curvelets provide the

smoothest representation, with cubic B-splines, Daubechies, and Dual-tree having noticeable ripples in their isosur-

faces.

class, the middle members provide the best quality reconstruction. Thus, lower families tend to688

not have enough representation to capture all the folds in the original surfaces, while the higher689

families introduce oscillations which affect the curvature of the surface. Such a trend is not seen690

for the fully mixed fluid isosurface, which has more folds and wrinkles due to the larger volume691

encompassed. In this case, the oscillations introduced by the higher order methods may help692

capture more of the details of the surface when they overlap to the surface wrinkles; however, such693

a match cannot not lead to a consistent trend.694
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Pure light fluid Fully mixed fluid

Method Surface area Mean curvature Gaussian curvature Surface area Mean curvature Gaussian curvature

Haar 1.346 0.523 219.030 0.991 0.627 11.483

Linear B-spline 1.173 0.298 0.577 0.983 0.914 0.655

Quadratic B-spline 1.143 0.453 0.829 0.971 0.880 0.835

Cubic B-spline 1.014 1.192 1.078 0.995 0.981 0.625

Quartic B-spline 0.954 2.867 1.346 0.995 0.947 0.682

Quintic B-spline 0.988 2.607 1.259 0.994 0.968 0.661

Daubechies-3 1.080 1.745 0.094 0.991 1.020 0.590

Daubechies-5 1.024 2.710 1.356 0.994 0.264 0.605

Daubechies-7 1.017 3.985 1.505 0.991 1.060 0.609

Coiflet-6 1.199 1.355 1.062 1.001 0.960 0.531

Coiflet-12 1.053 2.164 1.051 0.998 0.970 0.613

Coiflet-18 1.015 3.073 1.250 0.999 0.903 0.574

Dual-Tree 0.987 2.643 1.085 0.965 0.900 0.653

Surfacelet 0.921 2.862 1.994 0.957 0.995 0.931

Curvelet 1.183 2.005 1.126 0.920 0.891 0.574

Table 6: Isosurface area and average curvatures. Methods closest to 1.0 are in bold. Ratios of surface area and

average mean and Gaussian curvatures for the pure light and fully mixed fluids isosurfaces reconstructed using 3%

coefficients to the original dataset.
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4.3.7. Surface signature of the pure light, pure heavy and mixed fluids isosurfaces695

The surface signature can provide details on the structure of the surface [5]. Following the696

definition given in section 4.1.1, Fig. 19 compares the surface signature properties of the original697

dataset and a subset of the methods.698

There is a large disparity between the original dataset, the Haar wavelets and the remaining699

schemes. To start, the original surface signatures characterize all coarse and fine features in the700

dataset. The dark region near the center of the 2D histogram of the original surface signature701

corresponds to the fine features of the isosurfaces. None of the methods is able to reproduce the702

fine portion of the original dataset. In general, all higher order methods over-predict the amount of703

small scale features of the pure fluids isosurfaces and under-predict this amount for the mixed fluid704

isosurface. This is consistent with the representation of the average mean and Gaussian curvatures705

discussed in the previous section. Again, at the time in the flow evolution when the comparison706

are made, the amount of mixed fluid is much larger than either pure fluids and, consequently,707

the mixed fluid isosurface presents more folds and wrinkles. The oscillations introduced by the708

representation methods discussed will over-predict these features for the pure fluids isosurfaces709

and under-predict for the mixed fluid isosurface. In addition, the departure from the original710

dataset can not be attributed to Gaussian white noise. These results underline the specific problem711

of representing turbulence fields with non-physics based, universal basis functions. While in many712

problems the details of the small scales are not important, there are instances, e.g. reaction fronts713

in non-premixed combustion, when the lack of accurate representation of the scalar fields can714

lead to serious errors. For these cases, physics based sub-grid modeling can remedy the situation;715

however, finding optimal such models is still an outstanding open question.716

4.4. Performance and memory usage717

Performance is evaluated by measuring the runtime of each transform during its decomposition718

stage for a single scalar field from the dataset. Only the time taken during decomposition is719

presented as the synthesis operation generally takes the same amount of time. As before, the720

single-threaded variant of all methods is evaluated. Memory usage is defined as the storage space721

consumed for the decomposed coefficients and does not include the space used to hold the input722
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Figure 19: Surface signatures. Surface signatures described as a joint probability density function of the shape

index, S , and curvedness, C, together with their marginal PDFs. From top to bottom: original, Haar, cubic B-spline,

Daubechies-5 wavelets, curvelets and surfacelets. From left to right: pure light, fully mixed and pure heavy fluid

isosurfaces.
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Method Compute (s) Memory (MB) Efficiency

Haar 16.390 1065 1.2211

Linear B-spline 17.282 1072 1.2474

Quadratic B-spline 17.601 1080 1.2891

Cubic B-spline 22.320 1092 1.5611

Quartic B-spline 24.304 1106 1.6703

Quintic B-spline 30.373 1179 1.9914

Daubechies-3 18.866 1057 1.3616

Daubechies-5 21.863 1090 1.5291

Method Compute (s) Memory (MB) Efficiency

Daubechies-7 25.342 1125 1.7156

Coiflet-6 20.130 1059 1.4528

Coiflet-12 25.221 1113 1.7333

Coiflet-18 30.045 1152 1.9699

Dual-Tree 79.667 4096 1.4839

Surfacelet 31.666 4928 0.6891

Curvelet 77.660 8214 1.4041

Table 7: Performance. Compute time in seconds, memory usage in megabytes (MB) and Efficiency as compute time

per coefficient in seconds * 10-7 . The simplest methods are faster to compute compared to the higher order methods.

Surfacelets have the best efficiency by extracting the most coefficients for their measured compute time.

of the original dataset.723

The results in Table 7 represent the compute time required only for the forward transform of724

a targeted 3% coefficients, averaged over the series of five runs. The amount of effort required725

in extracting the strongest 3% coefficients is evaluated. During this evaluation, it is considered726

that the multi-band transforms can be performed without the need to extract all coefficients. The727

term ’Efficiency’ is defined as the amount of effort needed to compute one coefficient. Effort is728

a function of time taken over the total number of coefficients extracted. Due to their simplistic729

nature, the lowest-order wavelets perform the fastest and require the lowest amount of storage.730

The increase in wavelet complexity and family order coincides with the increase of compute time731

as well as number of coefficients extracted and memory usage. Surfacelets provide the best of732

compromises in terms of compute time per coefficient, overall compute time, and the ability to733

extract multiple bands from the data at a comparable cost to other methods. The curvelet transform734

takes the longest amount of time to compute due to the extraction of many coefficients. When735

requesting the same number of bands as surfacelets, curvelets take much longer to compute and736

extract more coefficients.737

In terms of efficiency, the surfacelet transform is the clear winner. Although the curvelet trans-738

form may take long to compute, it does performs remarkably well for the amount of coefficients739

extracted compared to the simpler B-splines and Daubechies wavelets. The curvelet transform740
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Test Type Best Method Runner-up

Velocity PDF Cubic B-spline Daubechies-5

Vorticity PSNR and MSE Cubic B-spline Quadratic B-spline

Vorticity PDF Cubic B-spline Quadratic B-spline

Strain rate tensor Quadratic B-spline Cubic B-spline

Density visualization Surfacelets Cubic B-spline

Density PSNR and MSE Cubic B-spline Quadratic B-spline

Density PDF Cubic B-spline Daubechies-5

Density power spectrum Dual-Tree Quintic B-Spline

Isosurface Visualization Surfacelets Curvelets

Curvature quantities Cubic B-spline Surfacelets

Surface signatures All methods except Haar —-

Performance Surfacelets Haar

Table 8: Summary. Compilation of the best respective methods for each test performed.

implementation provided by the respective authors contains a message passing interface (MPI),741

out-of-core C++ implementation where an almost linear speedup is observed in relation to the742

number of additional processors used when increased by powers of two. Although costly in per-743

formance, the MPI implementation makes the curvelet transform readily usable for large scientific744

computing applications where distributed compute nodes can be used to offset their high compute745

cost and memory requirements.746

5. Conclusions747

We have compared the effectiveness of various multi-resolution representation methods, in-748

cluding B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to evalu-749

ate these methods’ ability to capture the structure of fully developed turbulence using a truncated750

set of coefficients. The methods were tested by considering quantities pertaining to both veloc-751

ity and active scalar (density) fields and their derivatives, spectra, and the properties of constant752

density surfaces. Previous comparisons related to such decompositions of turbulent fields were753

restricted to orthogonal and biorthogonal (Harten) wavelets as applied to velocity and enstrophy754

PDFs, the kinetic energy spectrum and the PDF of helicity and Lamb vector [24] and the curvelet755

transform as a multi-scale analysis tool of turbulence [4, 5]. While CVS-type decompositions have756
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been mainly used to investigate the coherent/incoherent decomposition of flow, here the decom-757

position is performed at the level of the primary variables, velocity and density. This approach is758

not entirely new, for example, it is the base of the SCALES method [9] and has also been used759

for the analysis of a passive scalar [5]. The results presented address a more complex flow and760

encompass more representation methods, with more quantities related to the velocity field (e.g.,761

the state of the deviatoric strain rate tensor, which may be a better measure of the local flow coher-762

ence/incoherence than the velocity and vorticity PDFs) and, for the first time, quantities related to763

an active scalar field and its constant property surfaces.764

In addition, comparisons between the algorithms are given in terms of performance, accuracy,765

and compression properties. The results provide useful information for multi-resolution analysis766

of turbulence, coherent feature extraction, compression for large datasets handling, as well as767

simulations algorithms based on multi-resolution methods.768

A list of recommended methods for each test is provided in Table 8. In general, any method769

is superior to Haar wavelets as well as the constant members of the wavelet classes considering770

our series of tests. On the other hand, the results show that increasing the family order above a771

certain value is not always the ideal solution towards higher accuracy. At 3% coefficients, large772

structures within the flow are well preserved and at that percentage it is not necessary to go to773

very high order methods. Since the results are very similar across the higher orders of B-splines,774

it is not recommended to go above cubic B-splines, sacrificing more compute time and question-775

able accuracy gains. Daubechies wavelets are generally overshadowed by B-splines so their use is776

not recommended unless orthogonal properties must be preserved. Although Coiflets have a few777

advantages to Daubechies in derived surface quantities and preservation of kinetic energy, their778

representations of curved surfaces and scalar quantities are not ideal. Dual-tree wavelets contain779

properties that make them useful for curved surface preservation and energy separation, especially780

above 3% coefficients, but at the cost of high redundancy, point-wise accuracy, and a large com-781

pute cost. Based on their overall performance, the cubic B-spline wavelet is recommended as the782

general method for the turbulence data applications considered here. Surfacelets and curvelets783

have specific applications and advantages where they are able to identify specific features at dif-784

ferent scales in turbulence, taking full advantage of the multi-scale interface of these methods785
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but further analysis is required. Both surfacelets and curvelets provide superior representation of786

smooth surfaces compared to any other method for general applications in turbulence. Surfacelets787

are recommended over curvelets since they are much more efficient in computation, reconstruct788

more accurately at the same number of coefficients, and capture curved surfaces closest to the789

original data even compared to all the methods tested.790

The selection process described in this paper should be useful in several areas, including multi-791

resolution analysis of turbulence, coherent feature extraction, compression for large datasets han-792

dling, as well as simulations algorithms based on multi-resolution methods. While some of the793

algorithms discussed have already been used for simulations algorithms based on multi-resolution794

methods and others for multi-resolution analysis of turbulence, this survey offers a comprehensive795

view of most of the methods which are candidates for multi-resolution analysis and computation796

of turbulence. In addition, with the continuous increase in the computational platform speed and797

size, we would like to stress the emerging importance of compression algorithms for large dataset798

handling. For example, multi-resolution visualization for large datasets [38] and simulation appli-799

cations for in-situ analysis and visualization can be facilitated through the use of these algorithms.800

Projects such as the JHTDB [11] can be improved to support multi-resolution analysis and visu-801

alization to both reduce storage and transmission costs as well as create faster data visualizations802

of interesting structures. Opportunities for remote visualization are also available through the803

application of these methods at the data and image level.804
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Appendix A. Wavelet construction and their signals812

Wavelet signals in general have several vanishing moments. This property allows for a sparse813

but accurate representation of an input dataset with only a small number of coefficients. A signal814

is decomposed through multiple steps involving ”folds” at the largest scale until it reaches the815

smallest data scale. For the 3-D Wavelet Transform, an input data of size X (length) by Y (width)816

by Z (height) is processed by utilizing the 1-D signal decomposition step in the multiple dimen-817

sions. After a single iteration of the 1-D decomposition for each dimension, the result consists of a818

series of seven high-pass coefficients and one set of pure low-pass coefficients shown in Fig. A.20.819

Any region that has full or partial high-pass coefficients such as WHLL and WHHH can be used to820

describe the original data at that resolution. The low-pass coefficients WLLL are recursively com-821

puted by halving the size of each dimension per iteration until the data can no longer be halved822

further. This method can be described as a top-down approach, where the small-scale features in823

the data are captured initially and for each iteration, larger features are described. The finest coef-824

ficients, smallest in magnitude are extracted first and in the end, the coarsest, largest in magnitude825

coefficients are extracted.826

X

WL

WH

WLL WLH

WHL WHH

WLLH

WLLL WLHL

WLHH

WHLL

WHLH
WHHH

WHHL

Figure A.20: Signal Decomposition. Decomposition of a wavelet for dataset X using a single step in three dimensions

with the remaining coarse (WL) and fine (WH) coefficients. For each subsequent step, the low-pass coefficients WLLL

are iterated upon.

The continuous representations of the wave signals we use here can be found in Fig. A.21.827
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.21: Wavelet mother reconstruction signals. As the family order increases, signals in the frequency domain

become more complex creating more vanishing moments. The following signals represent biorthogonal wavelets: (a)

Haar, constant (b) linear B-spline (c) quadratic B-spline (d) cubic B-spline (e) quartic B-spline and (f) quintic B-

spline. Orthogonal signals are also shown in comparison as (g) Daubechies-3 (h) Daubechies-5 (i) Daubechies-7 (j)

Coiflet-6 (k) Coiflet-12 and (l) Coiflet-18.
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(a) (b) (c)

Figure A.22: Constant biorthogonal B-splines and control points. As the number of control parameters increases,

signals become more complex. The reconstruction wavelet functions presented are subsets of the constant biorthogo-

nal wavelet family using (a) 1 control point, Haar (b) three control points, Harten and (c) five control points

Appendix A.1. B-spline wavelet families828

When increasing the family order for B-spline wavelets, an improvement is expected in the829

representation of non-rigid surfaces. The change in signal behavior by increasing the family or-830

der can be seen in Fig. A.21. An increase in the number of control points within each family831

generally introduces a large number of oscillations in the data and reduces the overall quality of832

a reconstruction. The effect of increased control points on the constant family of signals can be833

seen in Fig. A.22. As a result, the B-spline wavelets chosen for this paper were tested with the834

least number of control parameters per family. Rather than increasing the number of control point835

parameters, an increase in family order enhances the complexity of the signal and improves the836

quality of a reconstruction. The discrete versions of these signals were used in form of filters as837

described by [36]. By considering a sinusoidal signal instead of the top-hat, a wavelet transform838

can capture superior directionality of a dataset.839
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